
Pergamon PII: S0305-0548(96)00094-9

Computers Ops Res. Vol. 24. No. 9, pp. 829-847, 1997
© 1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0305-0548/97 $17.00+0.00

A P A R A L L E L BRANCH-AND-BOUND A L G O R I T H M FOR

M U L T I C O M M O D I T Y LOCATION WITH B A L A N C I N G

REQUIREMENTS

Bernard Gendrontt~: and Teodor Gabriel Crainic2§
Dtpartement d'informatique et de recherche op&ationnelle and Centre de recherche sur les transports,

Universit~ de Montrtal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada

2 Dtpartement des sciences administratives, Universit6 du Qutbec ~ Montrtal and Centre de recherche sur les
transports, Universit6 de Montreal, Montreal, Quebec, Canada

(Received May 1995; in revised form December 1996)

Scope and Purpose--The management of a fleet of vehicles over a medium to long-term planning horizon
constitutes one of the major logistics issues faced by distribution and transportation finns. In the particular
context of the management of heterogeneous fleets of containers by international maritime shipping companies,
important strategic and tactical decisions have to be taken relative to the location of the depots for the empty
containers and the forecast and management of the empty movements. This article reviews a formulation and an
algorithm to tackle this problem that, in practice, may have to be solved repeatedly because often, container
shipping companies do not build their own depots, but rather use existing facilities from other modes (ports and
railyards, mostly). As a result of this characteristic, it is desirable that the algorithm be solved in a reasonable
amount of time (within a few minutes) on computers which are widely available. However, experiments with the
best known algorithm on an actual application have shown computing times of approximately 3 h on a powerful
workstation. Therefore, parallel computing emerges as an attractive way to improve the performance of the
algorithm. This article presents and analyzes an efficient parallel branch-and-bound algorithm and applies many
new ideas for implementing branch-and-bound algnrithms on parallel architectures.

Abstract--This article presents a parallel branch-and-bound algorithm for solving the multicommodity location
problem with balancing requirements, that is based on the best known sequential method for solving the problem,
The algorithm aims to exploit parallelism by dividing the search tree among processes and by performing
operations on several subproblems simultaneously. The algorithm is divided into two phases: synchronous
initialization and asynchronous exploration. Experimental results on a distributed network of workstations are
reported and analyzed. © 1997 Elsevier Science Ltd

1. I N T R O D U C T I O N

The multicommodity location problem with balancing requirements (MLB) was first introduced by
Crainic et al. [1]. The problem is motivated by the following industrial application, related to the
management of a heterogeneous fleet of containers by an international maritime shipping company. Once
a ship arrives at port, the company has to deliver loaded containers, which may come in several types and
sizes, to designated in-land destinations. Following their unloading by the importing customer, empty
containers are moved to a depot. From there, later on, they may be delivered to customers which request
containers for subsequent shipping of their own products. Further, empty containers often have to be
repositioned to other depots. These interdepot movements are a consequence of the regional unbalances
in empty container availabilities and needs throughout the network: some areas lack containers of certain
types, while others have surpluses of them. This requires balancing movements of empty containers
among depots and thus differentiates this problem from classical location-allocation applications. The
general problem is therefore to locate depots in order to collect the supply of empty containers available
at customers' sites and to satisfy the customer requests for empty containers, while minimizing the total
operating costs: the costs of opening and operating the depots, and the costs generated by customer-depot
and interdepot movements.

t To whom all correspondence should be addressed.
~: Bernard Gendron is Assistant Professor at the department of Computer Science and Operations Research, University of Montreal.

His Ph.D. Thesis, centered on sequential and parallel algorithms for solving network design problems, was awarded the first
prize at the Transportation Science Section (INFORMS) Dissertation competition of 1995. His research interests include integer
and combinatorial optimization, large-scale optimization, location and network design problems and parallel computing.

§ Teodor Gabriel Cralnic is Professor of Operations Research at the Department of Administrative Sciences, University of Quebec
at Montreal, and Director of the Centre for Research on Transportation, University of Montreal. His research interests are in
OR models, methods, and planning tools applied to transportation, as well as the study of parallel computing and its impact on
the design of OR models and algorithms.

829

830 Bernard Gendron and Teodor Gabriel Crainic

In practice, any formulation of this problem may have to be solved repeatedly because often, container
shipping companies do not build their own depots, but rather use facilities from other modes (ports and
railyards, mostly). Note also that, when planning these operations for a medium to long term time horizon
(typically, one month to a year), shipping companies need to test several scenarios, corresponding to
variations in patterns of demand, transportation costs, space availability and costs for container
warehousing, etc. Therefore, both algorithmic and solution efficiencies are of prime importance for this
class of applications.

Among the solution procedures that have been proposed for solving the problem [2-5], the branch-
and-bound algorithm presented by Gendron and Crainic [5], based on a dual-ascent bounding procedure
proposed by Crainic and Delorme, [2] proved to be the most efficient. However, there are still hard data
instances for which the algorithm generates rather large search trees. As an example, solving an actual
application generates 3845 nodes in the branch-and-bound tree and, because of the complexity of the
bounding procedure, requires more than 3 h of computing time on a powerful workstation. Therefore,
parallel computing emerges as an attractive way to improve the performance of the algorithm. The
objective of this article is to present and analyze an efficient parallel branch-and-bound algorithm for the
MLB, where operations are performed on several subproblems simultaneously.

Previous attempts at exploiting parallelism to solve the MLB can be found in [6-8]. In particular,
Gendron and Crainic [8] implement a parallel version of the branch-and-bound method developed by
Crainic et al. [3]. This algorithm implements a master-slave approach to perform bounding procedures
for several nodes simultaneously. The master process manages the list of generated subproblems and
assigns subproblems to slave processes according to a depth-first criterion. The algorithm proposed in the
present article is significantly different, not only because it is based on the most efficient sequential
algorithm known up to date, but also, and foremost, because it proposes a multiple-list implementation
where each process has its own local pool of subproblems.

To the best of our knowledge, the present article proposes many new ideas for implementing branch-
and-bound algorithms on parallel architectures (see Gendron and Crainic [9] for a detailed survey of the
field). It presents a two-phase algorithm starting with a synchronous initialization phase that can be seen
as a generalization of the sequential best-first search strategy. Two variants of the synchronous procedure
are introduced and compared. The second phase consists of an asynchronous procedure where each
process performs its own depth-first search of a subtree. When its local pool of subproblems is empty,
an idle process sends a request for work to a coordinator process that schedules the load balancing
activities based on information received from the working processes.

The article is organized as follows. In Section 2, we give a general network formulation of the MLB,
which is independent of the original application. Section 3 presents the sequential branch-and-bound
algorithm that forms the basis of the parallel one; this last is the subject of Section 4. Computational
experiments on a distributed network of SUN workstations are presented in Section 5. The Conclusion
summarizes our work, in particular the results obtained from the experiments.

2. PROBLEM FORMULATION AND RELAXATIONS

To formulate the problem, we consider a directed network G=(N,A), where N is the set of nodes and
A is the set of arcs. There are several commodities (types of containers) which move through the network
and which are represented by set P. The set of nodes may be partitioned into three subsets: O, the set of
origin nodes (supply customers); D, the set of destination nodes (demand customers); and T, the set of
transshipment nodes (depots). For each depot j eT , we define Ofj)={ieO:(i,j)~_A} and D(j)={ieD-
:(j,i) e_A }, the sets of customers adjacent to this depot, and we assume that there exists at least one origin
or destination adjacent to each depot j(O(j) tJ DQ)#O). For each node i eN, we define the sets of depots
adjacent to this node in both directions: T*(i)={jeT:(i,j)~_A}, and T-(i)={jeT:(j , i)eA}. Since it is
assumed that there are no arcs between customers, the set of arcs may be partitioned into three subsets:
customer-to-depot arcs, Aor= { (i,j) eA :i e O, j e T}; depot-to-customer arcs, Aro = { (i,j) ~_A :i e T,j e D }; and
depot-to-depot arcs, Art = { (i,j) e_A :i e T,j e T}.

The problem consists in minimizing costs incurred by moving flows through the network in order to
satisfy supplies at origins and demands at destinations. For each supply customer i e O, the supply of
commodity p is noted o~, while for each demand customer i eD, the demand for commodity p is noted
dp. All supplies and demands are assumed to be non-negative and deterministic. A non-negative cost c~
is incurred for each unit of flow of commodity p, moving on arc(/,j). In addition, for each depot j e T, a
non-negative fixed cost fj is incurred if the depot is opened.

A parallel branch-and-bound algorithm 831

Let x~ represent the amount of flow of commodity p moving on arc(i,j), and yj be the binary location
variable that takes value 1 if depot j is opened, and value 0 otherwise. The problem is then formulated
as:

• (C}'jXij+ ~ P P ~ dr (l) Z=mlnj~rfjy j+ p~p ~" P P P P
(i,j) EAoT (],i)~Art? U.k) EATT

subject to

xP=o p, V i E O , p E P ,
jeT*(i)

Y. x~=df, VieD,p~P,
jET*O) J

Y. xeii + Y, x ~ - , & xPij - E xP,=O VjeT.pEp.
iE /~) J kET+~) k~T-(j) "J

xe.<oe.. Vj e T, i E O(j),p e P, q--~teJ,

xe<dev. Vj~ T,i~D(j),p ~P,]¢---- t .1j,

P~ xq-O, V(i j) • ,p e P,

yjE {0,1 }, v j e r .

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Constraints (2) and (3) ensure that supply and demand requirements are met, relations (4) correspond
to flow conservation constraints at depot sites, while (5) and (6) forbid customer-related movements
through closed depots. Note that analogous constraints for the interdepot flows are redundant if interdepot
costs satisfy the triangle inequality [1] an assumption that we follow throughout this text.

Lower bounds on the optimal value of this problem may be derived by considering the strong
relaxation, obtained by replacing the integrality constraints (8) with yi->0, VjET. (Note that the
constraints yj---1,V j e T, are redundant because of constraints (5) and (6) and the fact that the fixed costs
are non-negative.) The dual of the resulting linear program, noted 9 , may be formulated as;

Ze= max X (,E~o°fl~f+ " i , (9)

subject to;

be f - a p - ~ . --<c p. V(ij) EAor. p e P. (1 O)

~?f + ~ f - ~,e<~e,~,__j,, Vq,i) EAro. p EP. (11)

A ; - Ak--c]~.P< p V(j.k)aArr.pEP. (12)

E E o~3~,+ irji .-~j, Vj~T, (13)
peP iEO(I) J i c D(j) J

yG>---O, V(i d) EAor, P ~ P, (14)

y~>-O, V(j,i) EAro, p ~P. (15)

Two relaxations of the MLB, that may be derived directly either from the dual of the strong relaxation
[2] or from Lagrangean relaxations [5], may be used in order to efficiently compute tight lower bounds
on Z~.

The first relaxation can be obtained by fixing the ~ variables to values satisfying constraints (13), or
equivalently, by relaxing constraints (5) and (6) and introducing them into the objective function with
non-negative 7 multipliers. We then obtain the following problem, called FLIP relaxation:

Z(y)=min ,~e ~ (c~+y/~)x/~+ Y. (c~+~)x~+ E cj~xj~ ,
U.JJ e~01 (j,i) E ATD (],k) eAIT

(16)

subject to constraints (2) to (4) and (7). This problem is a muhicommodity incapacitated minimum cost
network flow problem (MCNF), and thus decomposes into IPI single-commodity incapacitated minimum

832 Bernard Gendron and Teodor Gabriel Crainic

cost network flow problems.
The second relaxation can be derived by relaxing constraints (4) and introducing them into the

objective function with A multipliers. Restricting the multipliers to values satisfying constraints (12), one
then obtains the following problem, called FLOP relaxation:

{ E,-,, ,~((co+Aj)x,j+ ~ (c~-aj)xj,)} Z(A)= min jerkys+ Z_ Z P P " P P
(ij) EAoT (j,i) EA~ '

(17)

subject to constraints (2), (3) and (5) to (8). This problem is an uncapacitated location problem (ULP),
also called simple plant location problem [10] and uncapacitated facility location problem [11]. One of
the most efficient methods for solving the ULP is the DU ALOC algorithm proposed by Erlenkotter [12].
The algorithm is based on a dual-ascent procedure that provides a lower bound of good quality with a
rather limited computational effort, and also derives primal solutions satisfying the integrality
constraints.

3. SEQUENTIAL BRANCH-AND-BOUND ALGORITHM

The depth-first sequential branch-and-bound algorithm [5] makes use of the two relaxations defined
previously to compute tight bounds, and of efficient branching rules and preprocessing tests to reduce the
size of the branch-and-bound tree. To further curtail the enumeration, upper bounds may be easily
obtained by using the primal information generated when solving the relaxations. After solving the FLIP
relaxation, an upper bound may be computed from its optimal solution by setting Yi to 1 whenever there
is flow moving through depot j, and to 0 otherwise. When solving the FLOP relaxation, one may use the
best primal solution identified by DUALOC, and then solve an MCNF obtained by fixing the y variables
to the values of this primal solution.

To represent location variables that are fixed through branching and preprocessing rules, we define the
sets ToI = {j E T:yj E { O,1} },To= {j E T:yi=O }, and TI = {j E T:yj= I } of free, closed, and open depots,
respectively. To generate subproblems from a given subproblem S, we use a dichotomic branching rule:
a depot j*e T0j is chosen according to some criterion, and s{)* is obtained by transferring j* to To, while
S~* results from transferring j* to T~. According to the terminology of trees, S~" and S~* are the O-son node
and the 1-son node, respectively, of the father node S, and the original problem, where all depots are free,
is the root node. To decide which generated subproblem should be examined in priority, we use the depth-
first rule: choose one of the subproblems that was generated most recently. Since it can be implemented
efficiently using a last-in-first-out stack, this rule minimizes computer storage requirements, though the
total number of subproblems it generates might be large [13]. However, when, as in the present case, a
good heuristic is used to compute effective upper bounds, and smart branching rules are implemented to
efficiently explore the branch-and-bound tree, this disadvantage may be significantly reduced [5].

Formally then, the BB algorithm keeps a stack A of generated subproblems, as well as the value Z"
of the best solution identified thus far, and proceeds as follows.

(1) (Initialization) S is the original problem: T0~*-T, T0,-~, 7"14---0. A*--O. Z",---+~.
(2) (Preprocessing rule) Attempt to fix some variables (T01, To and T~ may be modified).
(3) (Bounding procedure) Perform the bounding procedure on S (Z" may be updated); if S may be

fathomed, goto 5.
(4) (Branching rule) Choose j* E To~ and generate SJo " and St'; select one of them to examine next, as

subproblem S, and add the other to A. Goto 2.
(5) (Stopping test) If A=i~, STOP; Z" is the optimal value of the original problem.
(6) (Backtracking) Select the subproblem S on top of A. If it may be fathomed goto 5, otherwise, goto

2.

Experimental results, reported in [5], have shown the superiority of the following branching rule that
makes use of the slack variables associated to constraints 1 3 of the dual ~ (defined for each j ~ T as

Slack branching rule: Choose j* =arg maxi~ro ,{sj}, and select first subproblem S{'.

A parallel branch-and-bound algorithm 833

3.1. Bounding procedure

The following dual-ascent bounding procedure is executed at step 3 of the BB algorithm. Lower
bounds are computed on the optimal value 7_~ of the modified dual ~, which is obtained from 5~ by
adding the constant term E fj to the objective function, and by replacing the fixed costs f~ (j e T) in

j ~ T I

constraints 13 with the modified fixed costs yj(j ~ T), defined as: y~=fj, if j e T01; yj= + oo, if j ~ To; ~=0, if
j E T,. The FLIP-FLOP procedure may then be formally stated as follows.

(1) (Initialization) Initialize y, Z~, a lower bound on Zb, and Z", an upper bound on Z. Set the iteration
counter t to 1.

(2) (lntegrality test) If T0,=O, compute an upper bound Z~ on Z by solving an MCNF; if
u u u~ ._ u. Z, <Z ,Z Z,, STOP.

(3) (Lower bound) Compute a lower bound Z~ on Z b either by solving the FLIP relaxation (if iteration
t mod 2= 1), or by applying DUALOC to the FLOP relaxation (if iteration t mod 2=0).

(4) (Lower bound test) If ZI,>-Z ", STOP.
(5) (Upper bound) Compute an upper bound Z, on Z either from the optimal solution of the FLIP

relaxation (if iteration t mod 2 = 1), or by solving an MCNF derived from the best primal solution
to the FLOP relaxation identified by DUALOC (if iteration t mod 2=0).

(6) (Upper bound update) If Z~ <Z",Z"~--Z~.
(7) (Stopping test) If Z" - ZI,< elZl Ztt- Zt,_ 1 < e2Z~,_ 1 or t=tmax, STOP.
(8) (Preprocessing rule) Attempt to fix some variables (T0,, To and T] may be modified).
(9) t,---t+ 1. Goto 2.

The initialization step depends on the status of the current subproblem: either it was just generated by the
branching rule, or it was obtained after backtracking (or is the root of the tree). In the first case, the values
computed at the father node are used to initialize ~ and Z~, while in the second case these variables are
initialized to 0. In all cases, Z" is initialized to the value of the best feasible solution identified thus far
by the BB algorithm.

The procedure starts with a FLIP, a choice experimentally proven to be superior [2]. Indeed, if a FLOP
is first solved, one does not take into account the influence of the balancing flows. In particular, some
depots may be given very large values for their associated ~, multipliers, and consequently become
"unattractive", though they might subsequently be required in order to satisfy the balancing constraints.

Note that the lower bound test performed at Step 4 includes the usual feasibility test that stops
computations when the relaxation is determined to be infeasible. Indeed, we assume in our description
that any infeasible subproblem takes an infinite optimal value. The stopping test uses three parameters ~,,
~2 and tm,,~ that can be adjusted by the user. The first stops the procedure when the relative gap between
the lower and upper bounds is sufficiently small, the second comes into play when the lower bound has
not sufficiently increased from one iteration to the next, while the third limits the number of iterations.

3.2. Preprocessing

Two properties can be used to implement preprocessing tests in step 8 of the FLIP-FLOP procedure.
The first property gives a condition, based on the slack variables, that indicates when a binary variable
must take value 0 in any optimal solution to the MLB. It may be formally stated as follows.

Slack property: let Z t be a lower bound on Z b corresponding to a feasible solution (/z,r/,A,3,) of the dual
/). Let Z" be an upper bound on Z. If (Z%sj)>-Z", then yj=0 in any optimal solution to the MLB
(j E To,).

The second property determines when a binary variable must be set to 1 in order to satisfy supply and
demand requirements:

ODproperty: if, for a given commodity p, there exists an origin (destination) i with of>O(d~>O) such
that only one depot j E Tot is adjacent to i, then yj= 1 in any feasible solution to the MLB.

4. PARALLEL BRANCH-AND-BOUND ALGORITHM

We now present a parallel branch-and-bound algorithm intended to be executed on coarse-grained
asynchronous message-passing systems. Since our objective is to speedup the time required to solve hard
data instances for which the sequential algorithm generates large search trees, our parallelization scheme
performs operations on several subproblems simultaneously. Note that other parallelization strategies

834 Bernard Gendron and Teodor Gabriel Crainic

would accelerate tedious computation phases, especially the bounding procedure, without changing the
exploration of the tree [9]. In the present case, for example, the decomposition of the MCNF into IPI
single-commodity minimum cost network flow problems could be performed in parallel. However, the
efficiency of a parallelization strategy based only on such a decomposition would be questionable, since
actual applications of the MLB have relatively few commodities (typically, in the order of 10 to 20). In
any case, when a sufficient number of processors is available, this strategy complements the tree
decomposition approach.

The proposed algorithm consists of two phases: a synchronous initialization phase and an
asynchronous exploration phase. The first phase can be seen as a generalization of the sequential best-first
search strategy, while in the second phase, the tree is divided into several subtrees explored concurrently
by a set of working processes. Each working process performs a modified sequential depth-first
procedure that includes communications. These communications mainly serve two purposes: inform all
processes when a new upper bound has been found, and balance the workload among processes. To
achieve this last objective, we use a coordinator process that schedules the load balancing activities based
on information received from the working processes.

4.1. First phase: synchronous initialization

At the beginning of the parallel execution of a branch-and-bound algorithm, only one subproblem, the
root node of the tree, is available to all processes. As a consequence, a start-up phase where parallelism
is not fully utilized seems difficult to avoid. Several authors have proposed initialization strategies to
overcome this problem (see Gendron and Crainic [9] for a detailed review of these strategies). Here, we
suggest a new approach which requires synchronization among processes and that can be seen as a
generalization of the sequential best-first search procedure.

We assume there are p=2 d processes, where d>0. The method is based on two procedures, executed
by each process simultaneously with the others, that perform communications by assuming that process
n(1-----n-- < p) and process n+2i(rlog2n]<--i<--log2p- 1) are connected to each other (when processes are
mapped onto a hypercube topology, for example, this organization scheme may be represented by a
binary tree that spans the hypercube).

The first procedure, called p-decomposition, when performed concurrently by all processes, results in
the generation of one subproblem per process, from an initial one located on process 1. There are two
variants of this procedure, The first one, called symmetric p-decomposition, expands the tree in a breadth-
first fashion (all newly generated sub-problems are at the same level of the tree). The second variant,
called asymmetric p-decomposition, expands the tree in a depth-first fashion (all newly generated
subproblems, except two, are at different levels of the tree).

Assuming that the initial subproblem, located on process l, is entirely characterized by the three sets
To1, To and T, the symmetric p-decomposition procedure, executed by each process n, can be stated as
follows:

(1) (Initialization) If n~ l, receive a subproblem, t,---rlog2n].
(2) (Stopping test) If t=log2p, STOE
(3) (Integrality test) If T01 =0 , send the subproblem to process n+2'. t,---t+ 1. Goto 2.
(4) (Branching rule) Perform the branching rule, but instead of storing the alternative in a stack, send

it to process n+2'. t,--t+ 1. Goto 2.

In a straightforward implementation of the asymmetric variant, process 1 applies the branching rule up
to p - 1 times, each time sending one subproblem to a process that has not yet received one (for
simplicity, we assume here that process 1 can reach all other processes directly):

(1) (Initialization) If n~ 1, receive a subproblem and STOE t,---1.
(2) (Stopping test) If t=p, STOE
(3) (Integrality test) If T0~ =t21, send the subproblem to process n+t. t~--t+ 1. Goto 2.
(4) (Branching rule) Perform the branching rule, but instead of storing the alternative in a stack, send

it to process n+t. t*--t+ I. Goto 2.

The second procedure, called p-best-first, assumes that each process manages a list H of evaluated
subproblems as a heap, which allows to identify the subproblem in H with the smallest lower bound. It
also assumes that Z u is a variable used by each process to identify the best upper bound known by this
process. The method, defined by the concurrent execution of the procedure by all processes, proceeds in

A parallel branch-and-bound algorithm 835

three steps. During the first step, process 1 obtains the smallest lower bound of all evaluated subproblems
along with the identification n* of the process that stores this subproblem in its local heap, as well as the
best upper bound obtained so far by all processes. In Step 2, process 1 verifies a termination condition
(namely, that the two bounds just obtained are equal), and notifies all processes when the condition is
true. If the condition is not verified, process 1 initiates a communication phase at the end of which all
processes know the best upper bound (as well as the process that stores the subproblem with the smallest
lower bound), while process n* knows that it stores the subproblem with the smallest lower bound. The
third step is a simple communication phase between processes 1 and n* (if n* = 1, process 1 simply
selects the best subproblem from its heap), after which process 1 has obtained the subproblem with the
smallest lower bound of all evaluated subproblems. The p-best-first procedure, run by each process n,
may be stated as follows.

(1) (First step) Find the smallest lower bound Z / of all subproblems in / / I f ZI>-Z u, remove all
subproblems from/7 t,--log2p, n*.--n.

(2) If n>2 ' - ~, send n*, Z I and Z" to process n - 2'- ~.
(3) If t=l'log:n], goto 5.
(4) Receive n+, Z~+ and Z~. If Z~+<ZliZ~,---Z~+ and n*,---n+. If Z~+<Z"~".--Z~+ t . - t - 1. If t>0, goto

2.
(5) (Second step) If n= l and Zt=Z ~, n * . - - 1 (a code to notify all processes that the problem has

been solved).
(6) If n~ 1, receive n* and Z ".
(7) t--Flog:n].
(8) Ift=log2p, goto 10.
(9) Send n* and Z ~ to process n+2'. t,---t+ 1. Goto 8.

(10) (Third step) If n*=n, remove the best subproblem from/7
(11) If n* =n and n~ 1, send the best subproblem to process 1; if n*> 1 and n= 1, receive the best

subproblem.

Using these two procedures, it is easy to define a synchronous algorithm which, at each step, generates
p subproblems from an initial one with the smallest lower bound among all generated subproblems.
These p subproblems are then evaluated in parallel, and the subproblem with the smallest lower bound
of all evaluated subproblems is determined by the p-best-first procedure. The algorithm is thus defined
by the following procedure, executed by each process concurrently with the others.

(1) (Initialization)A,.--t3. To~.--T, T0"--O, T~.--O. Z",---+ oo. t,--g).
(2) (p-decomposition) Obtain one subproblem by applying either the symmetric or the asymmetric p-

decomposition procedure.
(3) (p-evaluation) Perform the FLIP-FLOP procedure on the subproblem obtained at step 2. Store the

subproblem in/7, unless it can be fathomed.
(4) (Stopping test) If t=t~.~.nc, STOP.
(5) (p-best-first) Perform the p-best-first procedure. If the problem is solved, STOP. Otherwise,

process 1 has obtained the subproblem with the smallest lower bound, t.-t+ 1. Goto 2.

The procedure makes use of t~nc, a parameter adjusted appropriately, specified by the user. If t#~=0, the
procedure is equivalent to an initial phase where each process obtains one subproblem generated from the
root node (this was been used in the past by some authors [9]). If t~,c=+oo, the procedure defines a
completely synchronous algorithm, similar to the one proposed by Mohan [14]. Mohan's algorithm is
also a p-best-first method, but is implemented with a single-list managed by a master process that
generates the p subproblems at each step; hence, apart from synchronization, additional overheads are
incurred as a result of the central control. The synchronous algorithm is of course not efficient for solving
the MLB, since the time required to compute bounds by the FLIP-FLOP procedure may vary greatly from
one subproblem to another. However, it may be efficiept for solving problems for which bounds can be
obtained almost in constant time or in a synchronous fashion. We introduce it here mainly to balance the
load among processes as soon as possible (this is the role of the p-decomposition procedure), and to avoid
generating unpromising subproblems (this is the role of the p-best-first procedure). In Section 5, we
compare the performance of the method to an initialization which consists in giving the root node to one
process.

24:9-B

836 Bernard Gendron and Teodor Gabriel Crainic

4.2. Second phase: asynchronous exploration

After the initialization phase, each process starts with a heap of evaluated nodes and runs a depth-first
branch-and-bound procedure starting from a subproblem taken from its heap. Later, when a process
empties its stack, it first attempts to obtain a subproblem from its heap or, if its heap is empty, it tries to
obtain work from other processes through a dynamic load balancing procedure.

A description of the various load balancing methods used in parallel branch-and-bound algorithms can
be found in Gendron and Crainic [9]. Typically, load balancing methods designed for asynchronous
multiple-list branch-and-bound algorithms, where each process manages its own list, can be divided into
three categories (this classification can also be found in Kr6ger and Vornberger [15]).

Strategy on request: a process which has not enough work (or no work at all) sends a request to another
process.

Strategy without request: processes transfer work units to other processes without being asked to.
Combined strategy: this strategy combines the two previous ones.
To preserve the efficiency of the sequential depth-first algorithm, we use a strategy on request. Several

important issues have to be addressed, such as to which process to send a request and how this process
reacts to the request (e.g., how to select the work units to transfer if it decides to grant the request). In
our implementation, processes ask for work when they become idle, while the process granting a request
sends the subproblem on top of its stack (it may also send a subproblem stored in its heap, as we will
see shortly). In this way, local stacks can be managed similarly to the sequential version.

To decide on which process to send a request to, we use a coordinator that schedules the load balancing
activities. The coordinator is periodically informed of the current load L, of each process n (measured as
the total number of subproblems stored in the memory of the process) and receives requests from idle
processes. It identifies a candidate process that is to grant the request, by using a round robin strategy that
eliminates processes that have an insufficient load by the yardstick of afilter parameter Lml n. It proceeds
by assigning the candidate identification to a variable cand which is incremented modulo p when the
request is sent to the candidate or when it is eliminated because of an insufficient load. If no candidate
is found following a complete tour, the request is kept in a queue Q. The round robin strategy, which uses
a global variable to decide on the process which must receive the next request, is well-known in dynamic
load balancing algorithms (see Kumar, Grama and Nageshwara Rao [16], who also propose and analyze
a distributed version of this strategy that avoids contention of access to the global variable). However,
to our best knowledge, a strategy that uses a coordinator to eliminate as possible candidates processes that
have a poor load is new in parallel branch-and-bound algorithms.

A nice feature of this coordinator-based load balancing method is that it allows for an easy detection
of the termination of the algorithm. Indeed, our implementation ensures that a process cannot receive a
request from the coordinator while it is waiting for an answer to its own request, since the two types of
messages (request and answer to a request) travel through different channels. Hence, the coordinator only
needs to count the number nre q of requests received, to receive messages from all processes that are about
to answer a request, and to count the number nsend of such messages. Then, if the difference between n,eq

and nse,,d is equal to the number of processes p, there are no more active processes and no subproblems
are being exchanged. Thus, a termination message can be sent to all processes.

To summarize the activities performed by the coordinator, we state the following coordinator
procedure:

(1) Q~-(3, L,~O, l <-n<-p. cand*--1, nreq~O, nsend*"O.
(2) Check for arriving message. If no message has arrived, goto 7.
(3) If the message consists of a new load sent by process n, update L,.
(4) If the message consists of a request from process n, insert n in Q, Ln*---0 and n,~q*-nreq+ 1.
(5) If the message comes from a process that is about to answer a request, then nsen,t~"nsena+ 1.
(6) If nre q - - n~,nd=p, send a termination message to all processes and STOP.
(7) If Q=O, goto 2.
(8) Let n be the first element in Q. cando~d~---cand.
(9) If cand~n and L,.~d>Lm~ ~, send the request of process n to process cand; remove n from Q;

Lc,~t~---Lc,na- 1 (the coordinator guesses that the candidate will grant the request); cand,--cand
mod p+ 1; goto 7.

(10) cand~---cand mod p+ 1. If cand=cando~ d, goto 2. Otherwise, goto 9.

A working process about to perform the bounding procedure sends its current load to the coordinator if

A parallel branch-and-bound algorithm

Table I. Dimensions of test problems and sequential results

Problem IPI IOt IDI 171 IAorl IAml IArrl Nodes Time (s)

Pl 3 124 124 26 871 871 650 57 39
P2 6 125 125 25 875 875 600 77 141
P3 4 124 124 26 869 869 650 41 85
P4 2 219 219 44 2630 2630 1892 355 982
P5 2 219 219 44 2629 2629 1892 711 1487
P6 2 219 219 44 2629 2629 1892 267 1325
P7 1 219 219 44 2631 2631 1892 275 195
P8 2 220 220 43 2647 2647 1806 467 739
P9 2 220 220 43 2647 2647 1806 141 428
P10 12 289 289 130 1914 1914 890 3845 11860

837

it just became either less than or equal to L~ , or greater than L~,. At this point, it also verifies if any
request has been received from the coordinator and, if this is the case, it sends a message to the
coordinator to notify that the request is about to be answered. Then, if its current load is sufficient to grant
the request (i.e. larger than L~,), it sends the subproblem on top of its stack, or, if the stack is empty, the
best subproblem from its heap. If all subproblems in the heap can be fathomed by applying the lower
bound test, or if its load is too small, the process sends a negative answer.

A process with no more work to perform sends a request to the coordinator, and then waits for an
answer which can be a termination message, a negative answer to the request, or a positive answer to it.
In the first case, the process stops. In the second case, the process sends another request to the
coordinator. In the third case, a subproblem is received and treated. The treatment varies: if the
subproblem was selected from the stack of the granting process, a depth-first search is started by
computing bounds; otherwise, it was selected from the heap and the process starts a depth-first search by
performing the slack branching rule (the values of the slack variables are received from the granting
process).

To ensure the efficiency of the lower bound test of the bounding procedure, we implement a simple
scheme to communicate among processes newly found upper bounds. On the one hand, after performing
an iteration of the bounding procedure that improves its upper bound, a process broadcasts it to all other
processes. On the other hand, before performing the lower bound test, every process verifies if some other
process has sent a new upper bound and, if this is the case, it updates Z u if the received upper bound is
better than the stored one. This scheme is very simple, yet efficient in our case since, for the data
instances that we tested, upper bounds are not updated frequently (typically, almost optimal upper bounds
are found very early during the enumeration).

5. C O M P U T A T I O N A L E X P E R I M E N T S

To perform our experiments, we used a distributed network of workstations that consists of 16 SUN
Sparc5, each running a working process, and one SUN SparcServerl000 that hosts the coordinator. The
workstations are connected via an Ethernet cable that provides a peak communication speed of 10 Mbits/
s. The code is programmed in FORTRAN/77 by using the Parallel Virtual Machine (PVM) library of
functions. To implement the FLIP-FLOP bounding procedure, we used the primal simplex code RNET
[17] to solve minimum cost network flow problems. We also coded our own version of DUALOC, based
on the method originally described by Erlenkotter [12], and later on refined by Van Roy and Erlenkotter
[18]. In all experiments, the parameters of the FLIP-FLOP procedure are set to the following values;
e l = ~ 2 = 0 . 0 0 0 1 and t,~.~= 10.

To analyze the behavior of the parallel algorithm, we show the results obtained with ten problem
instances. The first nine, noted P1 to P9, are generated randomly (the generator is described in [3]), while
the last one, noted P10, is derived from data of an actual application to the planning of the container land
transportation operations of a European-based maritime shipping company. We can further divide the
randomly generated test problems into two classes: medium-size (P1 to P3) and large-size (P4 to P9). The
characteristics of the problems are summarized in Table 1, which also presents basic statistics relative to
the corresponding performance of the sequential algorithm: the number of nodes generated, and the
elapsed time in seconds on one SUN Sparc5 workstation.

The objectives of our computational experiments are to assess the impact of the initialization phase,
the load balancing method and the number of processes on the performance of the parallel algorithm. We
also want to compare the parallel algorithm with the best implementation of the sequential method. For
these purposes, we use four measures.

838 Bernard Gendron and Teodor Gabriel Crainic

Load balancing factor. This is the ratio of the minimum useful time to the maximum useful time,
where the minimum and the maximum are taken over all working processes.

Here, the useful time of a working process represents the total elapsed time minus the waiting and I/O
times of the process during the parallel execution.

Search overhead factor. This is the ratio of the number of nodes generated during a parallel execution
to the number of nodes explored by the sequential algorithm.

Speedup. This is the ratio of the total elapsed time required by the sequential algorithm to the total
elapsed time ("wall clock") of the parallel execution.

Adjusted speedup. This is the speedup multiplied by the search overhead factor. For each problem
instance, the reported measures of time and number of generated nodes represent averages over three
runs. We also compare five initialization strategies:

A0: the asymmetric initialization with tsync=0;
A5: the asymmetric initialization with tsr,c=5;
SO: the symmetric initialization with ts~,nc=0;
$5: the symmetric initialization with tsyn~=5;
R: the root initialization, which consists in giving the root node to one working process.

5.1. Effect of the filter parameter

First, we analyze the effect of the filter parameter, L,un, of the load balancing procedure, on the
performance of the parallel algorithm, through the evolution of the load balancing factor and the adjusted
speedup as functions of the filter parameter for different values of p (the number of working processes).
Note that, by examining the adjusted speedup instead of the speedup, we ignore the effect of the search
overhead and rather focus on the efficiency of the parallel implementation with respect to
communication, synchronization and idle times (for a detailed analysis of search overhead, see Section
5.3 below). Figures 1-3 show the load balancing factor as a function of the filter parameter for,
respectively, the medium-size problems (average), the large-size problems (average) and the actual
application. Figures 4-6 display the adjusted speedup as a function of the filter parameter for the same
three classes of problems. Figures are shown only when the root initialization is used, since the other
initialization strategies display similar results.

1 , , , , , ,

0.8

I

p,,16 .-M--

. °° o,°.o°°~°.°o°°.~ o,~..oo°

"°°'°"o°°°.°°~°°

0.2s . . .

, N

0 ! I I T i ± I
0 0 ~ 1 1.5 2 2 ~ 3 3 ~ 4

N W

Fig. 1. Load balancing factor versus filter parameter for medium-size problems.

A parallel branch-and-bound algorithm 839

0.8

O.6

] :
0.4

0 2

e ! i !

. -m
. B . " g . . .

0 I I I I I I I

0 O.S 1 1 .S 2 2..5 $ 3.,5 4
g~ r

Fig. 2, Load balancing factor versus filter parameter for large-size problems.

The figures indicate that the maximum of both quantities is usually attained at L ~ = 1, irrespective of
the problem instance and the number of working processes used. This means that best performances are
obtained when granting processes have at least two subproblems in their pool (thus, being able to keep
at least one for themselves). Therefore, in the remainder of this section, we only present results obtained
when L,m = 1.

The figures also reveal interesting characteristics of the parallel method and help to qualify the impact
of the problem type on its behavior. For example, they illustrate that, for a given problem size, it is not
always interesting to increase the number of processes. In particular, it is counterproductive to use 16

1.,2

p,,16

1

0.8

0.6

0.4

0.2
0

. . . . _ _ _ _ _ _ _ _

I I & I i I I

0.5 1 1 ~ 2 2.5 $ $.q

Fig. 3. Load balancing factor versus filter parameter for actual application.

840 Bernard Gendron and Teodor Gabriel Crainic

i
|

12

10

p - 2 - ~ - p• . - t - ~
- D - - -

;) -16 --~--

T

, t - ,,. _ _ . - - - -

T ~ t $
0 I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5
filler

Fig. 4. Adjusted speedup versus filter parameter for medium-size problems.

working processes for medium-size problems since the results obtained are better when p=8. The poor
values of the load balancing factor explain this loss of performance: many processes remain idle most of
the time because of the small size of the branch-and-bound trees (less than 100 nodes). For larger
problems, the impact is different. In particular, when p= 16 and L,~,= 1, the large-size problems display,
on average, a load balancing factor close to 0.5, which results in an adjusted speedup larger than 10. For
the actual application, even higher load balancing factors are achieved, all greater than 0.8, and, as a
result, an adjusted speedup of almost 8 is obtained for p = 8 and of more than 12 for p = 16. One may then
conclude that 8 processes represents an "ideal" number for actual industrial problems of such dimensions,

|
|
Y

12

10:

6 i

e i w i e | u

. El . 4D' . (3" .

. '4 - - "4' 4-

e e o

0 I I I I ! I I
0 O J 1 1 ~ 2 2.5 3 3 ~ 4

N W

Fig. 5. Adjusted speedup versus filter parameter for large-size problems.

A parallel branch-and-bound algorithm 841

i

12

10

8
I

6

4

2

0
0

l i i . w i

N _ ~mO -E--.

........ El . -19 . m.

• • e

I I I I I I I

0.5 1 1.5 2 2.5 3 3.5
Nut

Fig. 6. Adjusted speedup versus filter parameter for actual application.

which is interesting from a practical point of view. (For a more detailed analysis of speedup results for
each class of problems, see Section 5.4).

5.2. Comparison of initialization strategies

To compare the initialization strategies, we examine the evolution of the load balancing factor and of
the adjusted speedup as functions of the number of working processes used. This is illustrated in Figs 7
and 8, which display results averaged over all 10 problems. Note that similar tendencies are observed for
each problem class (medium-size, large-size and actual application), although significant differences are

1 i : i i i :

AO -~ - -
AS - + - -
SO-a. - .

o~

!o.
0.4

0 1 ~ I I ! I I I

2 4 8 8 10 12 14 16
p

Fig. 7. Load balancing factor versus number of processes for all p r o b l e m s .

842 Bernard Gendron and Teodor Gabriel Crainic

12

10

I | | | II |

AO-~--
AS -+--
SO-i - - .
S S - ~ -

i | '

0
2 4 6 8 10 12 14 18

P

Fig. 8. Adjusted speedup versus number o f processes for all problems.

displayed in the range of values of both measures obtained for each class.
Three main conclusions emerge from these figures.

• An efficient load balancing appears easier to achieve when the synchronous initialization phase is
used. This is especially true when the asymmetric variant is used, which generally outperforms the
symmetric one.

• A good load balancing factor does not necessarily lead to an efficient implementation. In particular,
compared to the others, the A5 strategy shows competitive load balancing factors but poor adjusted
speedups. This may be attributed to the significant synchronization delays incurred by this method,
especially when implemented within a distributed system such as the one used here.

• Overall, the R, A0 and SO strategies are competitive and give similar results with respect to the
adjusted speedups, with A0 and SO dominating, especially when the number of processes
increases.

5.3. Search overhead

Next, we analyze the search overhead, hereafter noted SO, incurred by the parallel algorithm. Since
this value is clearly dependent upon the instance being solved, we first display, in Tables 2-6, the search
overhead obtained by each initialization strategy for each problem instance and four values of p.

Note that, when the root initialization procedure is used, the sequential and the parallel algorithms
perform the same branching and bounding operations, but in a different order. Therefore, the parallel

Table 2. Search overhead for strategy R

Problem p=2 p = 4 p=8 p=16

PI 1.40 1.50 1.64 1.87
P2 1.03 0.77 0.64 0.64
P3 0.53 0.53 0.52 0.53
P4 1,05 1,19 1.31 1.47
P5 1.01 1,01 1.05 1.11
1)6 1.01 1.00 1.12 1.31
P7 1,12 1,41 1.72 1.86
P8 0.84 1.07 1.25 1.47
P9 1.00 1.00 1.06 1.08
PI0 1.07 1.20 1.44 1.84

A parallel branch-and-bound algorithm

Table 3. Search overhead for sU'ategy A0

Problecm p=2 p=4 p=8 p=16

Pl 1.58 2.54 3.05 2.42
P2 0.79 1.02 1.08 i.25
P3 0.65 1.04 0.81 0.99
P4 1.11 1.38 1.20 1.54
P5 1.04 1.06 1.10 1.13
P6 1.00 0.87 1.04 1.28
P7 1.28 1.40 1.40 1.56
P8 0.93 0.93 0.94 1.26
P9 0.99 0.94 1.18 1.73
PI0 1.18 1.39 1.45 1.82

843

algorithm may discover improving solutions faster (in terms of the number of nodes explored to this
point) than the sequential method, thus leading to positive anomalies (SO< 1). The contrary is also likely
to occur and the parallel execution then exhibits negative anomalies (SO> 1). (For a complete survey of
past studies on anomalies in parallel branch-and-bound algorithms, see [9].) In this respect, the results of
Table 2 are especially interesting, since they show that, for each problem, the amplitude of the anomalies
observed (either positive or negative) increases as p increases. The other tables show that this behavior
is exclusive to the root initialization. In particular, both the A5 and $5 strategies do not exhibit any trends
with respect to p. However, the A0 and SO strategies show a similar tendency to have their search
overhead increased, on average, as p increases.

We also note that the amplitude of the anomalies is generally higher when the A5 and $5 strategies are

Table 4. Search overhead for strategy A5

Problem p=2 p = 4 p=8 p=16

Pl 1.44 1.12 1,16 1.96
P2 1.17 0.57 0,78 1.38
P3 0.68 0.55 0.75 1.35
P4 0.95 2.20 1.64 1.29
P5 1.14 1.04 1.13 1.04
P6 0.94 1.20 1.06 1.09
P7 1.25 1.51 3.92 1.25
P8 0.96 1.29 0.61 0.74
P9 1.93 1.48 1.25 1.22
PlO 1.05 1.14 1.46 2.73

Table 5. Search overhead for strategy SO

Problem p=2 p=4 p=8 p=16

PI 1.68 2.06 2.23 1.89
P2 0.80 0.83 0.85 0.99
P3 0.65 0.94 0.96 0.90
P4 1.11 1.30 1.74 1.50
P5 1.03 1.04 0.97 1.18
P6 1.00 0.84 1.07 1.37
P7 1.29 1.51 1.56 1.94
P8 0.94 0.87 1.12 1.39
P9 0.99 0.79 1.08 1.39
PlO 1.17 1.37 1.44 1.47

Table 6. Search overhead for strategy $5

Problem p=2 p=4 p=8 p= 16

PI 1.44 1.12 1.33 2.11
P2 1.17 0.60 0.78 1.40
P3 0.68 0.78 0.86 1.35
P4 0.95 1.12 1.44 1.77
P5 1.14 0.89 1.27 1.34
P6 0.94 1.07 1.32 1.45
P7 1.25 1.56 1.52 1.56
P8 0.96 0.81 1.41 0.73
P9 1.93 1.19 1.42 2.17
PIO 1.05 1.25 1.21 1.45

844 Bernard Gendron and Teodor Gabriel Crainic

used. This shows that these strategies lead to follow significantly different paths than the sequential
algorithm. Moreover, the trees generated are usually larger than the sequential one, especially for the
actual application and the large-size problems. The same conclusion holds for all other initialization
strategies, irrespective of the number of processes used. We interpret this result as an indication of the
efficiency of the sequential search strategy, rather than a deficiency of the parallel one.

5.4. Speedup analysis

We now turn to analyze the speedups obtained from the parallel algorithm for each class of problems
and, by using this metric, further compare the initialization strategies. Figures 9-11 show the speedup as
a function of the number of working processes for, respectively, the medium-size problems (average), the
large-size problems (average) and the actual application.

The following conclusions emerge from these figures.

• Ve ry limited speedups are obtained for medium-size problems, due to the small size of the branch-
and-bound trees. Also, for this class of problems, the better results obtained from the root
initialization may be explained by positive anomalies.

• For large-size problems, the A5 and $5 strategies are outperformed by the others, because of the
significant synchronization delays they incur. Note that the clear superiority of A5 over $5 forp= 16
can be attributed to important differences in the size of the trees generated by each strategy. For this
class of problems, it is also clear that search overhead causes a significant decrease in speedups.
Nevertheless, and despite the relatively small size of the trees generated (less than 1000 nodes),
interesting speedups are observed.

• For the actual application, the $5 strategy outperforms the others because it generates a smaller tree.
This observation is confirmed by Fig. 12, which shows the adjusted speedup as a function of the
number of processes for all initialization strategies. Here, the situation is reversed: the $5 strategy
is outperformed by the others. The two figures also show that, for this problem, the speedup is
severely limited by the presence of negative anomalies. Nevertheless, interesting speedups are
obtained, showing the problem to be solved in less than 30 min for p= 16.

i

1 2 i i

10

AO "~"-
A S - + - -
SO .El--.
S5 - ~ - -

R -,L--

o " i i i i i i
2 4 O 8 10 12 14

P

Fig. 9. Speedup versus number of processes for medium-size problems.

16

12

.iS -+--
S0 -g--.
S8 -~--

10 R ..,b.-

A parallel branch-and-bound algorithm 845

| w w ; *!

i 6

4

2

0 I I I I I I

2 4 6 8 10 12 14 16
P

Fig. 10. Speedup versus number of processes for large-size problems.

6. CONCLUSION

We have presented a parallel branch-and-bound algorithm for solving the multicommodity location
problem with balancing requirements. The algorithm is based on a depth-first branch-and-bound
procedure, which is currently the most efficient sequential method for solving the problem. The parallel
algorithm proceeds in two phases: a synchronous initialization and an asynchronous exploration of the
branch-and-bound tree. The synchronous initialization phase can be seen as a generalization of the
sequential best-first search strategy. The exploration phase consists of an asynchronous procedure where

12

10

A8 --,--
SO • g--.
$ 5 - w -

i:1 - ~ -

8

| .

o
2 4 8 8 lO 12 14 16

p

Fig. 1 I. Speedup versus number of processes for actual application.

846

14

12

Bernard Gendron and Teodor Gabriel Crainic

l | . | !

AO -e--
AS - - I - - - °

S0 -Is--.
SS-~- -
R - 4 b , - -

10

| | '
6~

2 4 6 8 10 12 14 16
P

Fig. 12. Adjusted speedup versus number of processes for actual application.

each process performs its own depth-first search of a subtree. When its local pool of subproblems is
empty, an idle process sends a request for work to a coordinator process that schedules the load balancing
activities based on information received from the working processes.

In general, compared with the approach which initializes the algorithm by giving the root node to one
process, the synchronous initialization phase yields balanced initial loads, hence decreasing the
subsequent traffic of exchanged nodes. However, synchronization delays may be important, especially
when the computation of bounds varies significantly from one subproblem to another, or when a
distributed environment is used. Our experiments have also shown that the asynchronous exploration
performs well, irrespective of the initialization phase, and achieves significant speedups on a set of ten
representative test problems, despite the fact that, for many instances, the parallel algorithm generates
significantly larger trees than the sequential method. We note that this is an indication of the efficiency
of the sequential search strategy, since for these instances, even if different initialization strategies were
tested, smaller trees than the sequential one were generally not obtained. Overall, we have demonstrated
that parallel branch-and-bound techniques may help to solve more efficiently large real-size instances of
the multicommodity location problem with balancing requirements. In addition, we note that the
proposed parallelization approaches could prove useful in solving other problems that require time-
consuming bounding procedures and which generate large search trees.

Acknowledgements--Financial support for this project was provided by N.S.E.R.C. (Canada) and the Fonds EC.A.R. (Quebec). We
want to acknowledge the efforts of Nathalie Talbot and Benoit Bourbeau who helped us in carrying out the thousands of executions
of the parallel algorithm, summarized in Section 5. We also want to thank two anonymous referees whose comments have helped
us write a better article.

REFERENCES

1. Crainic, T. G., Dejax, P. J. and Delorme, L., Models for multimode multicommodity location problems with interdepot
balancing requirements. Annals of Operations Research 1989, 18, 279-302.

2. Crainic, T. G. and Delorme, L., Dual-ascent procedures for multicommodity location-allocation problems with balancing
requirements. Transportation Science, 1993, 27, 2 90-101.

3. Crainic, T. G., Delorme, L. and Dejax, E J., A branch-and-bound method for multicommodity location with balancing
requirements. European Journal of Operational Research 1993, 65, 3 368-382.

4. Crainic, T. G., Gendrean, M., Sodano, E and Toulouse, M., A tabu search procedure for multicommodity location/allocation
with balancing requirements. Annals of Operations Research 1992, 41, 359-383.

5. Gendron, B. and Crainic, T. G., A branch-and-bound algorithm for depot location and container fleet management. Location
Science, 1995, 3, 1 39-53.

6. Crainic, T. G., Toulouse, M. and Gendreau, M., Synchronous tabu search parallelization strategies for multicommodity
location-allocation with balancing requirements. OR Spektrura, 1995, 17, 2-3 113-123.

7. Crainic, T. G., Toulouse, M. and Gendreau, M., Parallel asynchronous tabu search for multicommodity location-allocation with

A parallel branch-and-bound algorithm 847

balancing requirements. Annals of Operations Research 1996, 63, 277-299.
8. Gendron, B. and Crainic, T. G., Parallel implementations of a branch-and-bound algorithm for multicommodity location with

balancing requirements. INFOR 1993, 31, 3 151-165.
9. Gendron, B. and Crainic, T. G., Parallel branch-and-bound algorithms: survey and synthesis. Operations Research 1994, 42,

6 1042-1066.
10. Krarup, J. and Pruzan, P. M., The simple plant location problem: survey and synthesis. European Journal of Operational

Research 1983, 12, 36-81.
! I. Comu6jols, G., Nemhauser, G. L. and Wolsey, L. A., The uncapacitated facility location problem, in Discrete Location Theory,

ed. R.L. Francis and P.B. Mirchandani, Wiley-lnterscience, 1990, pp. 119-168.
12. Erlenkotter, D., A dual-based procedure for uncapacitated facility location. Operations Research 1978, 26, 6 992-1009.
13. Ibaraki, T., Enumerative approaches to combinatorial optimization, Annals of Operations Research, 10--11, 1987.
14. Moban, J., A study in parallel computation: the traveling salesman problem, Report CMU-CS-82-136(R), Computer Science

Department, Carnegie-Mellon University, Pittsburgh, 1982.
15. Kr6ger, B. and Vomberger, O., A parallel branch-and-bound approach for solving a two-dimensional cuRing-stock problem,

Technical Report, Department of Mathematics and Computer Science, University of Osnabriick, 1990.
16. Kumar, V., Grama, A. Y. and Nageshwara Rao, V., Scalable load balancing techniques for parallel computers. Journal of

Parallel and Distributed Computing 1994, 22, 60-79.
17. Grigoriadis, M. D. and Hsu, T., RNET-The Rutgers Minimum Cost Network Flow Subroutines, Rutgers University, New

Brunswick, New Jersey, 1979.
18. Van Roy, T. J. and Erlenkotter, T., A dual-based procedure for dynamic facility location. Management Science 1982, 28, 10

1091-1105.

