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Scope and Purpose--The management of a fleet of vehicles over a medium to long-term planning horizon 
constitutes one of the major logistics issues faced by distribution and transportation finns. In the particular 
context of the management of heterogeneous fleets of containers by international maritime shipping companies, 
important strategic and tactical decisions have to be taken relative to the location of the depots for the empty 
containers and the forecast and management of the empty movements. This article reviews a formulation and an 
algorithm to tackle this problem that, in practice, may have to be solved repeatedly because often, container 
shipping companies do not build their own depots, but rather use existing facilities from other modes (ports and 
railyards, mostly). As a result of this characteristic, it is desirable that the algorithm be solved in a reasonable 
amount of time (within a few minutes) on computers which are widely available. However, experiments with the 
best known algorithm on an actual application have shown computing times of approximately 3 h on a powerful 
workstation. Therefore, parallel computing emerges as an attractive way to improve the performance of the 
algorithm. This article presents and analyzes an efficient parallel branch-and-bound algorithm and applies many 
new ideas for implementing branch-and-bound algnrithms on parallel architectures. 

Abstract--This  article presents a parallel branch-and-bound algorithm for solving the multicommodity location 
problem with balancing requirements, that is based on the best known sequential method for solving the problem, 
The algorithm aims to exploit parallelism by dividing the search tree among processes and by performing 
operations on several subproblems simultaneously. The algorithm is divided into two phases: synchronous 
initialization and asynchronous exploration. Experimental results on a distributed network of workstations are 
reported and analyzed. © 1997 Elsevier Science Ltd 

1. I N T R O D U C T I O N  

The multicommodity location problem with balancing requirements (MLB) was first introduced by 
Crainic et al. [1]. The problem is motivated by the following industrial application, related to the 
management of a heterogeneous fleet of containers by an international maritime shipping company. Once 
a ship arrives at port, the company has to deliver loaded containers, which may come in several types and 
sizes, to designated in-land destinations. Following their unloading by the importing customer, empty 
containers are moved to a depot. From there, later on, they may be delivered to customers which request 
containers for subsequent shipping of their own products. Further, empty containers often have to be 
repositioned to other depots. These interdepot movements are a consequence of the regional unbalances 
in empty container availabilities and needs throughout the network: some areas lack containers of certain 
types, while others have surpluses of them. This requires balancing movements of empty containers 
among depots and thus differentiates this problem from classical location-allocation applications. The 
general problem is therefore to locate depots in order to collect the supply of empty containers available 
at customers' sites and to satisfy the customer requests for empty containers, while minimizing the total 
operating costs: the costs of opening and operating the depots, and the costs generated by customer-depot 
and interdepot movements. 
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In practice, any formulation of this problem may have to be solved repeatedly because often, container 
shipping companies do not build their own depots, but rather use facilities from other modes (ports and 
railyards, mostly). Note also that, when planning these operations for a medium to long term time horizon 
(typically, one month to a year), shipping companies need to test several scenarios, corresponding to 
variations in patterns of demand, transportation costs, space availability and costs for container 
warehousing, etc. Therefore, both algorithmic and solution efficiencies are of prime importance for this 
class of applications. 

Among the solution procedures that have been proposed for solving the problem [2-5], the branch- 
and-bound algorithm presented by Gendron and Crainic [5], based on a dual-ascent bounding procedure 
proposed by Crainic and Delorme, [2] proved to be the most efficient. However, there are still hard data 
instances for which the algorithm generates rather large search trees. As an example, solving an actual 
application generates 3845 nodes in the branch-and-bound tree and, because of the complexity of the 
bounding procedure, requires more than 3 h of computing time on a powerful workstation. Therefore, 
parallel computing emerges as an attractive way to improve the performance of the algorithm. The 
objective of this article is to present and analyze an efficient parallel branch-and-bound algorithm for the 
MLB, where operations are performed on several subproblems simultaneously. 

Previous attempts at exploiting parallelism to solve the MLB can be found in [6-8]. In particular, 
Gendron and Crainic [8] implement a parallel version of the branch-and-bound method developed by 
Crainic et al. [3]. This algorithm implements a master-slave approach to perform bounding procedures 
for several nodes simultaneously. The master process manages the list of generated subproblems and 
assigns subproblems to slave processes according to a depth-first criterion. The algorithm proposed in the 
present article is significantly different, not only because it is based on the most efficient sequential 
algorithm known up to date, but also, and foremost, because it proposes a multiple-list implementation 
where each process has its own local pool of subproblems. 

To the best of our knowledge, the present article proposes many new ideas for implementing branch- 
and-bound algorithms on parallel architectures (see Gendron and Crainic [9] for a detailed survey of the 
field). It presents a two-phase algorithm starting with a synchronous initialization phase that can be seen 
as a generalization of the sequential best-first search strategy. Two variants of the synchronous procedure 
are introduced and compared. The second phase consists of an asynchronous procedure where each 
process performs its own depth-first search of a subtree. When its local pool of subproblems is empty, 
an idle process sends a request for work to a coordinator process that schedules the load balancing 
activities based on information received from the working processes. 

The article is organized as follows. In Section 2, we give a general network formulation of the MLB, 
which is independent of the original application. Section 3 presents the sequential branch-and-bound 
algorithm that forms the basis of the parallel one; this last is the subject of Section 4. Computational 
experiments on a distributed network of SUN workstations are presented in Section 5. The Conclusion 
summarizes our work, in particular the results obtained from the experiments. 

2. PROBLEM FORMULATION AND RELAXATIONS 

To formulate the problem, we consider a directed network G=(N,A), where N is the set of nodes and 
A is the set of arcs. There are several commodities (types of containers) which move through the network 
and which are represented by set P. The set of nodes may be partitioned into three subsets: O, the set of 
origin nodes (supply customers); D, the set of destination nodes (demand customers); and T, the set of 
transshipment nodes (depots). For each depot j eT ,  we define Ofj)={ieO:(i,j)~_A} and D(j)={ieD-  
:(j,i) e_A }, the sets of customers adjacent to this depot, and we assume that there exists at least one origin 
or destination adjacent to each depot j(O(j) tJ DQ)#O). For each node i eN, we define the sets of depots 
adjacent to this node in both directions: T*(i)={jeT:(i,j)~_A}, and T-( i )={jeT:( j , i )eA}.  Since it is 
assumed that there are no arcs between customers, the set of arcs may be partitioned into three subsets: 
customer-to-depot arcs, Aor= { (i,j) eA :i e O, j e T}; depot-to-customer arcs, Aro = { (i,j) ~_A :i e T,j e D }; and 
depot-to-depot arcs, Art = { ( i,j) e_A :i e T,j e T}. 

The problem consists in minimizing costs incurred by moving flows through the network in order to 
satisfy supplies at origins and demands at destinations. For each supply customer i e  O, the supply of 
commodity p is noted o~, while for each demand customer i eD,  the demand for commodity p is noted 
dp. All supplies and demands are assumed to be non-negative and deterministic. A non-negative cost c~ 
is incurred for each unit of flow of commodity p, moving on arc(/,j). In addition, for each depot j e T, a 
non-negative fixed cost fj is incurred if the depot is opened. 



A parallel branch-and-bound algorithm 831 

Let x~ represent the amount of flow of commodity p moving on arc(i,j), and yj be the binary location 
variable that takes value 1 if depot j is opened, and value 0 otherwise. The problem is then formulated 
as: 

• ( C}'jXij+ ~ P P ~ dr (l) Z=mlnj~rfjy j+ p~p ~" P P P P 
(i,j) EAoT (],i)~Art? U.k) EATT 

subject to 

xP=o p, V i E O , p E P ,  
jeT*(i) 

Y. x~=df, VieD,p~P,  
jET*O) J 

Y. xeii + Y, x ~ -  , &  xPij - E xP,=O VjeT.pEp. 
iE /~)  J kET+~) k~T-(j) "J 

xe.<oe.. Vj e T, i E O(j),p e P, q--~teJ, 

xe<dev. Vj~ T,i~D(j),p ~P, ]¢---- t .1j, 

P~ xq-O,  V(i j )  • ,p e P, 

yjE {0,1 }, v j e r .  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Constraints (2) and (3) ensure that supply and demand requirements are met, relations (4) correspond 
to flow conservation constraints at depot sites, while (5) and (6) forbid customer-related movements 
through closed depots. Note that analogous constraints for the interdepot flows are redundant if interdepot 
costs satisfy the triangle inequality [1] an assumption that we follow throughout this text. 

Lower bounds on the optimal value of this problem may be derived by considering the strong 
relaxation, obtained by replacing the integrality constraints (8) with yi->0, VjET. (Note that the 
constraints yj---1,V j e T, are redundant because of constraints (5) and (6) and the fact that the fixed costs 
are non-negative.) The dual of the resulting linear program, noted 9 ,  may be formulated as; 

Ze= max X ( ,E~o°fl~f+ " i , (9) 

subject to; 

be f - a p - ~ .  --<c p. V(ij) EAor. p e P. ( 1 O) 

~?f + ~ f  - ~,e<~e,~,__j,, Vq,i)  EAro. p EP. (11 ) 

A ; -  Ak--c]~.P< p V(j.k)aArr.pEP. (12) 

E E o~3~,+ irji .-~j,  Vj~T, (13) 
peP iEO(I) J i c D(j ) J 

yG>---O, V(i d) EAor, P ~ P, (14) 

y~>-O, V(j,i) EAro, p ~P. (15) 

Two relaxations of the MLB, that may be derived directly either from the dual of the strong relaxation 
[2] or from Lagrangean relaxations [5], may be used in order to efficiently compute tight lower bounds 
on Z~. 

The first relaxation can be obtained by fixing the ~ variables to values satisfying constraints (13), or 
equivalently, by relaxing constraints (5) and (6) and introducing them into the objective function with 
non-negative 7 multipliers. We then obtain the following problem, called FLIP relaxation: 

Z(y)=min ,~e .... ~ (c~+y/~)x/~+ Y. (c~+~)x~+ E cj~xj~ , 
U.JJ e~01 (j,i) E ATD (],k) eAIT 

(16) 

subject to constraints (2) to (4) and (7). This problem is a muhicommodity incapacitated minimum cost 
network flow problem (MCNF), and thus decomposes into IPI single-commodity incapacitated minimum 
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cost network flow problems. 
The second relaxation can be derived by relaxing constraints (4) and introducing them into the 

objective function with A multipliers. Restricting the multipliers to values satisfying constraints (12), one 
then obtains the following problem, called FLOP relaxation: 

{ E,-,, ,~( (co+Aj)x,j+ ~ (c~-aj)xj,)} Z(A)= min jerkys+ Z_ Z P P " P P 
(ij) EAoT (j,i) EA~ ' 

(17) 

subject to constraints (2), (3) and (5) to (8). This problem is an uncapacitated location problem (ULP), 
also called simple plant location problem [10] and uncapacitated facility location problem [ 11 ]. One of 
the most efficient methods for solving the ULP is the DU ALOC algorithm proposed by Erlenkotter [12]. 
The algorithm is based on a dual-ascent procedure that provides a lower bound of good quality with a 
rather limited computational effort, and also derives primal solutions satisfying the integrality 
constraints. 

3. SEQUENTIAL BRANCH-AND-BOUND ALGORITHM 

The depth-first sequential branch-and-bound algorithm [5] makes use of the two relaxations defined 
previously to compute tight bounds, and of efficient branching rules and preprocessing tests to reduce the 
size of the branch-and-bound tree. To further curtail the enumeration, upper bounds may be easily 
obtained by using the primal information generated when solving the relaxations. After solving the FLIP 
relaxation, an upper bound may be computed from its optimal solution by setting Yi to 1 whenever there 
is flow moving through depot j, and to 0 otherwise. When solving the FLOP relaxation, one may use the 
best primal solution identified by DUALOC, and then solve an MCNF obtained by fixing the y variables 
to the values of this primal solution. 

To represent location variables that are fixed through branching and preprocessing rules, we define the 
sets ToI = {j E T:yj E { O,1} },To= {j E T:yi=O }, and TI = {j E T:yj= I } of free, closed, and open depots, 
respectively. To generate subproblems from a given subproblem S, we use a dichotomic branching rule: 
a depot j*e  T0j is chosen according to some criterion, and s{)* is obtained by transferring j* to To, while 
S~* results from transferring j* to T~. According to the terminology of trees, S~" and S~* are the O-son node 
and the 1-son node, respectively, of the father node S, and the original problem, where all depots are free, 
is the root node. To decide which generated subproblem should be examined in priority, we use the depth- 
first rule: choose one of the subproblems that was generated most recently. Since it can be implemented 
efficiently using a last-in-first-out stack, this rule minimizes computer storage requirements, though the 
total number of subproblems it generates might be large [13]. However, when, as in the present case, a 
good heuristic is used to compute effective upper bounds, and smart branching rules are implemented to 
efficiently explore the branch-and-bound tree, this disadvantage may be significantly reduced [5]. 

Formally then, the BB algorithm keeps a stack A of generated subproblems, as well as the value Z" 
of the best solution identified thus far, and proceeds as follows. 

(1) (Initialization) S is the original problem: T0~*-T, T0,-~, 7"14---0. A*--O. Z",---+~. 
(2) (Preprocessing rule) Attempt to fix some variables (T01, To and T~ may be modified). 
(3) (Bounding procedure) Perform the bounding procedure on S (Z" may be updated); if S may be 

fathomed, goto 5. 
(4) (Branching rule) Choose j* E To~ and generate SJo " and St'; select one of them to examine next, as 

subproblem S, and add the other to A. Goto 2. 
(5) (Stopping test) If A=i~, STOP; Z" is the optimal value of the original problem. 
(6) (Backtracking) Select the subproblem S on top of A. If it may be fathomed goto 5, otherwise, goto 

2. 

Experimental results, reported in [5], have shown the superiority of the following branching rule that 
makes use of the slack variables associated to constraints 1 3 of the dual ~ (defined for each j ~ T as 

Slack branching rule: Choose j* =arg maxi~ro ,{sj}, and select first subproblem S{'. 
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3.1. Bounding procedure 

The following dual-ascent bounding procedure is executed at step 3 of the BB algorithm. Lower 
bounds are computed on the optimal value 7_~ of the modified dual ~,  which is obtained from 5~ by 
adding the constant term E fj to the objective function, and by replacing the fixed costs f~ (j e T) in 

j ~ T  I 

constraints 13 with the modified fixed costs yj(j ~ T), defined as: y~=fj, if j e T01; yj= + oo, if j ~ To; ~=0, if 
j E T,. The FLIP-FLOP procedure may then be formally stated as follows. 

(1) (Initialization) Initialize y, Z~, a lower bound on Zb, and Z", an upper bound on Z. Set the iteration 
counter t to 1. 

(2) (lntegrality test) If T0,=O, compute an upper bound Z~ on Z by solving an MCNF; if 
u u u~ ._  u. Z, <Z ,Z Z,, STOP. 

(3) (Lower bound) Compute a lower bound Z~ on Z b either by solving the FLIP relaxation (if iteration 
t mod 2= 1), or by applying DUALOC to the FLOP relaxation (if iteration t mod 2=0). 

(4) (Lower bound test) If ZI,>-Z ", STOP. 
(5) (Upper bound) Compute an upper bound Z, on Z either from the optimal solution of the FLIP 

relaxation (if iteration t mod 2 = 1), or by solving an MCNF derived from the best primal solution 
to the FLOP relaxation identified by DUALOC (if iteration t mod 2=0). 

(6) (Upper bound update) If Z~ <Z",Z"~--Z~. 
(7) (Stopping test) If Z" - ZI,< elZl Ztt- Zt,_ 1 < e2Z~,_ 1 or t=tmax, STOP. 
(8) (Preprocessing rule) Attempt to fix some variables (T0,, To and T] may be modified). 
(9) t,---t+ 1. Goto 2. 

The initialization step depends on the status of the current subproblem: either it was just generated by the 
branching rule, or it was obtained after backtracking (or is the root of the tree). In the first case, the values 
computed at the father node are used to initialize ~ and Z~, while in the second case these variables are 
initialized to 0. In all cases, Z" is initialized to the value of the best feasible solution identified thus far 
by the BB algorithm. 

The procedure starts with a FLIP, a choice experimentally proven to be superior [2]. Indeed, if a FLOP 
is first solved, one does not take into account the influence of the balancing flows. In particular, some 
depots may be given very large values for their associated ~, multipliers, and consequently become 
"unattractive", though they might subsequently be required in order to satisfy the balancing constraints. 

Note that the lower bound test performed at Step 4 includes the usual feasibility test that stops 
computations when the relaxation is determined to be infeasible. Indeed, we assume in our description 
that any infeasible subproblem takes an infinite optimal value. The stopping test uses three parameters ~,, 
~2 and tm,,~ that can be adjusted by the user. The first stops the procedure when the relative gap between 
the lower and upper bounds is sufficiently small, the second comes into play when the lower bound has 
not sufficiently increased from one iteration to the next, while the third limits the number of iterations. 

3.2. Preprocessing 

Two properties can be used to implement preprocessing tests in step 8 of the FLIP-FLOP procedure. 
The first property gives a condition, based on the slack variables, that indicates when a binary variable 
must take value 0 in any optimal solution to the MLB. It may be formally stated as follows. 

Slack property: let Z t be a lower bound on Z b corresponding to a feasible solution (/z,r/,A,3,) of the dual 
/). Let Z" be an upper bound on Z. If (Z%sj)>-Z", then yj=0 in any optimal solution to the MLB 
(j E To,). 

The second property determines when a binary variable must be set to 1 in order to satisfy supply and 
demand requirements: 

ODproperty: if, for a given commodity p, there exists an origin (destination) i with of>O(d~>O) such 
that only one depot j E  Tot is adjacent to i, then yj= 1 in any feasible solution to the MLB. 

4. PARALLEL BRANCH-AND-BOUND ALGORITHM 

We now present a parallel branch-and-bound algorithm intended to be executed on coarse-grained 
asynchronous message-passing systems. Since our objective is to speedup the time required to solve hard 
data instances for which the sequential algorithm generates large search trees, our parallelization scheme 
performs operations on several subproblems simultaneously. Note that other parallelization strategies 
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would accelerate tedious computation phases, especially the bounding procedure, without changing the 
exploration of the tree [9]. In the present case, for example, the decomposition of the MCNF into IPI 
single-commodity minimum cost network flow problems could be performed in parallel. However, the 
efficiency of a parallelization strategy based only on such a decomposition would be questionable, since 
actual applications of the MLB have relatively few commodities (typically, in the order of 10 to 20). In 
any case, when a sufficient number of processors is available, this strategy complements the tree 
decomposition approach. 

The proposed algorithm consists of two phases: a synchronous initialization phase and an 
asynchronous exploration phase. The first phase can be seen as a generalization of the sequential best-first 
search strategy, while in the second phase, the tree is divided into several subtrees explored concurrently 
by a set of working processes. Each working process performs a modified sequential depth-first 
procedure that includes communications. These communications mainly serve two purposes: inform all 
processes when a new upper bound has been found, and balance the workload among processes. To 
achieve this last objective, we use a coordinator process that schedules the load balancing activities based 
on information received from the working processes. 

4.1. First phase: synchronous initialization 

At the beginning of the parallel execution of a branch-and-bound algorithm, only one subproblem, the 
root node of the tree, is available to all processes. As a consequence, a start-up phase where parallelism 
is not fully utilized seems difficult to avoid. Several authors have proposed initialization strategies to 
overcome this problem (see Gendron and Crainic [9] for a detailed review of these strategies). Here, we 
suggest a new approach which requires synchronization among processes and that can be seen as a 
generalization of the sequential best-first search procedure. 

We assume there are p=2 d processes, where d>0. The method is based on two procedures, executed 
by each process simultaneously with the others, that perform communications by assuming that process 
n(1-----n-- < p) and process n+2i(rlog2n]<--i<--log2p- 1) are connected to each other (when processes are 
mapped onto a hypercube topology, for example, this organization scheme may be represented by a 
binary tree that spans the hypercube). 

The first procedure, called p-decomposition, when performed concurrently by all processes, results in 
the generation of one subproblem per process, from an initial one located on process 1. There are two 
variants of this procedure, The first one, called symmetric p-decomposition, expands the tree in a breadth- 
first fashion (all newly generated sub-problems are at the same level of the tree). The second variant, 
called asymmetric p-decomposition, expands the tree in a depth-first fashion (all newly generated 
subproblems, except two, are at different levels of the tree). 

Assuming that the initial subproblem, located on process l, is entirely characterized by the three sets 
To1, To and T,  the symmetric p-decomposition procedure, executed by each process n, can be stated as 
follows: 

(1) (Initialization) If n~  l, receive a subproblem, t,---rlog2n]. 
(2) (Stopping test) If t=log2p, STOE 
(3) (Integrality test) If T01 =0 ,  send the subproblem to process n+2'. t,---t+ 1. Goto 2. 
(4) (Branching rule) Perform the branching rule, but instead of storing the alternative in a stack, send 

it to process n+2'.  t,--t+ 1. Goto 2. 

In a straightforward implementation of the asymmetric variant, process 1 applies the branching rule up 
to p -  1 times, each time sending one subproblem to a process that has not yet received one (for 
simplicity, we assume here that process 1 can reach all other processes directly): 

(1) (Initialization) If n~  1, receive a subproblem and STOE t,---1. 
(2) (Stopping test) If t=p, STOE 
(3) (Integrality test) If T0~ =t21, send the subproblem to process n+t. t~--t+ 1. Goto 2. 
(4) (Branching rule) Perform the branching rule, but instead of storing the alternative in a stack, send 

it to process n+t. t*--t+ I. Goto 2. 

The second procedure, called p-best-first, assumes that each process manages a list H of evaluated 
subproblems as a heap, which allows to identify the subproblem in H with the smallest lower bound. It 
also assumes that Z u is a variable used by each process to identify the best upper bound known by this 
process. The method, defined by the concurrent execution of the procedure by all processes, proceeds in 
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three steps. During the first step, process 1 obtains the smallest lower bound of all evaluated subproblems 
along with the identification n* of the process that stores this subproblem in its local heap, as well as the 
best upper bound obtained so far by all processes. In Step 2, process 1 verifies a termination condition 
(namely, that the two bounds just obtained are equal), and notifies all processes when the condition is 
true. If the condition is not verified, process 1 initiates a communication phase at the end of which all 
processes know the best upper bound (as well as the process that stores the subproblem with the smallest 
lower bound), while process n* knows that it stores the subproblem with the smallest lower bound. The 
third step is a simple communication phase between processes 1 and n* (if n* = 1, process 1 simply 
selects the best subproblem from its heap), after which process 1 has obtained the subproblem with the 
smallest lower bound of all evaluated subproblems. The p-best-first procedure, run by each process n, 
may be stated as follows. 

(1) (First step) Find the smallest lower bound Z / of all subproblems in / / I f  ZI>-Z u, remove all 
subproblems from/7 t,--log2p, n*.--n. 

(2) If n>2 ' -  ~, send n*, Z I and Z" to process n - 2'- ~. 
(3) If t=l'log:n], goto 5. 
(4) Receive n+, Z~+ and Z~. If Z~+<ZliZ~,---Z~+ and n*,---n+. If Z~+<Z"~".--Z~+ t . - t -  1. If t>0, goto 

2. 
(5) (Second step) If n= l  and Zt=Z ~, n * . - -  1 (a code to notify all processes that the problem has 

been solved). 
(6) If n~  1, receive n* and Z ". 
(7) t--Flog:n]. 
(8) Ift=log2p, goto 10. 
(9) Send n* and Z ~ to process n+2'. t,---t+ 1. Goto 8. 

(10) (Third step) If n*=n, remove the best subproblem from/7 
(11) If n* =n and n~  1, send the best subproblem to process 1; if n*> 1 and n= 1, receive the best 

subproblem. 

Using these two procedures, it is easy to define a synchronous algorithm which, at each step, generates 
p subproblems from an initial one with the smallest lower bound among all generated subproblems. 
These p subproblems are then evaluated in parallel, and the subproblem with the smallest lower bound 
of all evaluated subproblems is determined by the p-best-first procedure. The algorithm is thus defined 
by the following procedure, executed by each process concurrently with the others. 

(1) (Initialization)A,.--t3. To~.--T, T0"--O, T~.--O. Z",---+ oo. t,--g). 
(2) (p-decomposition) Obtain one subproblem by applying either the symmetric or the asymmetric p- 

decomposition procedure. 
(3) (p-evaluation) Perform the FLIP-FLOP procedure on the subproblem obtained at step 2. Store the 

subproblem in/7, unless it can be fathomed. 
(4) (Stopping test) If t=t~.~.nc, STOP. 
(5) (p-best-first) Perform the p-best-first procedure. If the problem is solved, STOP. Otherwise, 

process 1 has obtained the subproblem with the smallest lower bound, t.-t+ 1. Goto 2. 

The procedure makes use of t~nc, a parameter adjusted appropriately, specified by the user. If t#~=0, the 
procedure is equivalent to an initial phase where each process obtains one subproblem generated from the 
root node (this was been used in the past by some authors [9]). If t~,c=+oo, the procedure defines a 
completely synchronous algorithm, similar to the one proposed by Mohan [14]. Mohan's algorithm is 
also a p-best-first method, but is implemented with a single-list managed by a master process that 
generates the p subproblems at each step; hence, apart from synchronization, additional overheads are 
incurred as a result of the central control. The synchronous algorithm is of course not efficient for solving 
the MLB, since the time required to compute bounds by the FLIP-FLOP procedure may vary greatly from 
one subproblem to another. However, it may be efficiept for solving problems for which bounds can be 
obtained almost in constant time or in a synchronous fashion. We introduce it here mainly to balance the 
load among processes as soon as possible (this is the role of the p-decomposition procedure), and to avoid 
generating unpromising subproblems (this is the role of the p-best-first procedure). In Section 5, we 
compare the performance of the method to an initialization which consists in giving the root node to one 
process. 

24:9-B 
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4.2. Second phase: asynchronous exploration 

After the initialization phase, each process starts with a heap of evaluated nodes and runs a depth-first 
branch-and-bound procedure starting from a subproblem taken from its heap. Later, when a process 
empties its stack, it first attempts to obtain a subproblem from its heap or, if its heap is empty, it tries to 
obtain work from other processes through a dynamic load balancing procedure. 

A description of the various load balancing methods used in parallel branch-and-bound algorithms can 
be found in Gendron and Crainic [9]. Typically, load balancing methods designed for asynchronous 
multiple-list branch-and-bound algorithms, where each process manages its own list, can be divided into 
three categories (this classification can also be found in Kr6ger and Vornberger [15]). 

Strategy on request: a process which has not enough work (or no work at all) sends a request to another 
process. 

Strategy without request: processes transfer work units to other processes without being asked to. 
Combined strategy: this strategy combines the two previous ones. 
To preserve the efficiency of the sequential depth-first algorithm, we use a strategy on request. Several 

important issues have to be addressed, such as to which process to send a request and how this process 
reacts to the request (e.g., how to select the work units to transfer if it decides to grant the request). In 
our implementation, processes ask for work when they become idle, while the process granting a request 
sends the subproblem on top of its stack (it may also send a subproblem stored in its heap, as we will 
see shortly). In this way, local stacks can be managed similarly to the sequential version. 

To decide on which process to send a request to, we use a coordinator that schedules the load balancing 
activities. The coordinator is periodically informed of the current load L, of each process n (measured as 
the total number of subproblems stored in the memory of the process) and receives requests from idle 
processes. It identifies a candidate process that is to grant the request, by using a round robin strategy that 
eliminates processes that have an insufficient load by the yardstick of afilter parameter Lml n. It proceeds 
by assigning the candidate identification to a variable cand which is incremented modulo p when the 
request is sent to the candidate or when it is eliminated because of an insufficient load. If no candidate 
is found following a complete tour, the request is kept in a queue Q. The round robin strategy, which uses 
a global variable to decide on the process which must receive the next request, is well-known in dynamic 
load balancing algorithms (see Kumar, Grama and Nageshwara Rao [16], who also propose and analyze 
a distributed version of this strategy that avoids contention of access to the global variable). However, 
to our best knowledge, a strategy that uses a coordinator to eliminate as possible candidates processes that 
have a poor load is new in parallel branch-and-bound algorithms. 

A nice feature of this coordinator-based load balancing method is that it allows for an easy detection 
of the termination of the algorithm. Indeed, our implementation ensures that a process cannot receive a 
request from the coordinator while it is waiting for an answer to its own request, since the two types of 
messages (request and answer to a request) travel through different channels. Hence, the coordinator only 
needs to count the number nre q of requests received, to receive messages from all processes that are about 
to answer a request, and to count the number nsend of such messages. Then, if the difference between n,eq 

and nse,,d is equal to the number of processes p, there are no more active processes and no subproblems 
are being exchanged. Thus, a termination message can be sent to all processes. 

To summarize the activities performed by the coordinator, we state the following coordinator 
procedure: 

(1) Q~-(3, L,~O, l <-n<-p. cand*--1, nreq~O, nsend*"O. 
(2) Check for arriving message. If no message has arrived, goto 7. 
(3) If the message consists of a new load sent by process n, update L,. 
(4) If the message consists of a request from process n, insert n in Q, Ln*---0 and n,~q*-nreq+ 1. 
(5) If the message comes from a process that is about to answer a request, then nsen,t~"nsena+ 1. 
(6) If nre q - -  n~,nd=p, send a termination message to all processes and STOP. 
(7) If Q=O, goto 2. 
(8) Let n be the first element in Q. cando~d~---cand. 
(9) If cand~n and L,.~d>Lm~ ~, send the request of process n to process cand; remove n from Q; 

Lc,~t~---Lc,na- 1 (the coordinator guesses that the candidate will grant the request); cand,--cand 
mod p+  1; goto 7. 

(10) cand~---cand mod p+  1. If cand=cando~ d, goto 2. Otherwise, goto 9. 

A working process about to perform the bounding procedure sends its current load to the coordinator if 
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Table I. Dimensions of test problems and sequential results 

Problem IPI IOt IDI 171 IAorl IAml IArrl Nodes Time (s) 

Pl 3 124 124 26 871 871 650 57 39 
P2 6 125 125 25 875 875 600 77 141 
P3 4 124 124 26 869 869 650 41 85 
P4 2 219 219 44 2630 2630 1892 355 982 
P5 2 219 219 44 2629 2629 1892 711 1487 
P6 2 219 219 44 2629 2629 1892 267 1325 
P7 1 219 219 44 2631 2631 1892 275 195 
P8 2 220 220 43 2647 2647 1806 467 739 
P9 2 220 220 43 2647 2647 1806 141 428 
P10 12 289 289 130 1914 1914 890 3845 11860 
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it just became either less than or equal to L~ ,  or greater than L~,. At this point, it also verifies if any 
request has been received from the coordinator and, if this is the case, it sends a message to the 
coordinator to notify that the request is about to be answered. Then, if its current load is sufficient to grant 
the request (i.e. larger than L~,), it sends the subproblem on top of its stack, or, if the stack is empty, the 
best subproblem from its heap. If all subproblems in the heap can be fathomed by applying the lower 
bound test, or if its load is too small, the process sends a negative answer. 

A process with no more work to perform sends a request to the coordinator, and then waits for an 
answer which can be a termination message, a negative answer to the request, or a positive answer to it. 
In the first case, the process stops. In the second case, the process sends another request to the 
coordinator. In the third case, a subproblem is received and treated. The treatment varies: if the 
subproblem was selected from the stack of the granting process, a depth-first search is started by 
computing bounds; otherwise, it was selected from the heap and the process starts a depth-first search by 
performing the slack branching rule (the values of the slack variables are received from the granting 
process). 

To ensure the efficiency of the lower bound test of the bounding procedure, we implement a simple 
scheme to communicate among processes newly found upper bounds. On the one hand, after performing 
an iteration of the bounding procedure that improves its upper bound, a process broadcasts it to all other 
processes. On the other hand, before performing the lower bound test, every process verifies if some other 
process has sent a new upper bound and, if this is the case, it updates Z u if the received upper bound is 
better than the stored one. This scheme is very simple, yet efficient in our case since, for the data 
instances that we tested, upper bounds are not updated frequently (typically, almost optimal upper bounds 
are found very early during the enumeration). 

5. C O M P U T A T I O N A L  E X P E R I M E N T S  

To perform our experiments, we used a distributed network of workstations that consists of 16 SUN 
Sparc5, each running a working process, and one SUN SparcServerl000 that hosts the coordinator. The 
workstations are connected via an Ethernet cable that provides a peak communication speed of 10 Mbits/ 
s. The code is programmed in FORTRAN/77 by using the Parallel Virtual Machine (PVM) library of 
functions. To implement the FLIP-FLOP bounding procedure, we used the primal simplex code RNET 
[17] to solve minimum cost network flow problems. We also coded our own version of DUALOC, based 
on the method originally described by Erlenkotter [12], and later on refined by Van Roy and Erlenkotter 
[18]. In all experiments, the parameters of the FLIP-FLOP procedure are set to the following values; 
e l = ~ 2 = 0 . 0 0 0 1  and t,~.~= 10. 

To analyze the behavior of the parallel algorithm, we show the results obtained with ten problem 
instances. The first nine, noted P1 to P9, are generated randomly (the generator is described in [3]), while 
the last one, noted P10, is derived from data of an actual application to the planning of the container land 
transportation operations of a European-based maritime shipping company. We can further divide the 
randomly generated test problems into two classes: medium-size (P1 to P3) and large-size (P4 to P9). The 
characteristics of the problems are summarized in Table 1, which also presents basic statistics relative to 
the corresponding performance of the sequential algorithm: the number of nodes generated, and the 
elapsed time in seconds on one SUN Sparc5 workstation. 

The objectives of our computational experiments are to assess the impact of the initialization phase, 
the load balancing method and the number of processes on the performance of the parallel algorithm. We 
also want to compare the parallel algorithm with the best implementation of the sequential method. For 
these purposes, we use four measures. 
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Load balancing factor. This is the ratio of the minimum useful time to the maximum useful time, 
where the minimum and the maximum are taken over all working processes. 

Here, the useful time of a working process represents the total elapsed time minus the waiting and I/O 
times of the process during the parallel execution. 

Search overhead factor. This is the ratio of the number of nodes generated during a parallel execution 
to the number of nodes explored by the sequential algorithm. 

Speedup. This is the ratio of the total elapsed time required by the sequential algorithm to the total 
elapsed time ("wall clock") of the parallel execution. 

Adjusted speedup. This is the speedup multiplied by the search overhead factor. For each problem 
instance, the reported measures of time and number of generated nodes represent averages over three 
runs. We also compare five initialization strategies: 

A0: the asymmetric initialization with tsync=0; 
A5: the asymmetric initialization with tsr,c=5; 
SO: the symmetric initialization with ts~,nc=0; 
$5: the symmetric initialization with tsyn~=5; 
R: the root initialization, which consists in giving the root node to one working process. 

5.1. Effect of the filter parameter 

First, we analyze the effect of the filter parameter, L,un, of the load balancing procedure, on the 
performance of the parallel algorithm, through the evolution of the load balancing factor and the adjusted 
speedup as functions of the filter parameter for different values of p (the number of working processes). 
Note that, by examining the adjusted speedup instead of the speedup, we ignore the effect of the search 
overhead and rather focus on the efficiency of the parallel implementation with respect to 
communication, synchronization and idle times (for a detailed analysis of search overhead, see Section 
5.3 below). Figures 1-3 show the load balancing factor as a function of the filter parameter for, 
respectively, the medium-size problems (average), the large-size problems (average) and the actual 
application. Figures 4-6 display the adjusted speedup as a function of the filter parameter for the same 
three classes of problems. Figures are shown only when the root initialization is used, since the other 
initialization strategies display similar results. 
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Fig. 1. Load balancing factor versus filter parameter for medium-size problems. 
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The figures indicate that the maximum of both quantities is usually attained at L ~ =  1, irrespective of 
the problem instance and the number of working processes used. This means that best performances are 
obtained when granting processes have at least two subproblems in their pool (thus, being able to keep 
at least one for themselves). Therefore, in the remainder of this section, we only present results obtained 
when L,m = 1. 

The figures also reveal interesting characteristics of the parallel method and help to qualify the impact 
of the problem type on its behavior. For example, they illustrate that, for a given problem size, it is not 
always interesting to increase the number of processes. In particular, it is counterproductive to use 16 

1.,2 

p,,16 

1 

0.8 

0.6 

0.4 

0.2 
0 

. . . .  _ . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  _ _ _ _ _ _ _  

I I & I i I I 

0.5 1 1 ~ 2 2.5 $ $.q 

Fig. 3. Load balancing factor versus filter parameter for actual application. 



840 Bernard Gendron and Teodor Gabriel Crainic 

i 
| 

12 

10 

p - 2  - ~ -  p• . - t - ~  
- D - - -  

; ) -16 --~-- 

T . . . . . . . .  

, t  . . . . . . . . . . . .  . . -  . . . . . . .  ..,,. . . . . .  _ _ . - - - -  

T ~ t $ 
0 I I I I I I I 

0 0.5 1 1.5 2 2.5 3 3.5 
filler 

Fig. 4. Adjusted speedup versus filter parameter for medium-size problems. 

working processes for medium-size problems since the results obtained are better when p=8. The poor 
values of the load balancing factor explain this loss of performance: many processes remain idle most of 
the time because of the small size of the branch-and-bound trees (less than 100 nodes). For larger 
problems, the impact is different. In particular, when p= 16 and L,~,= 1, the large-size problems display, 
on average, a load balancing factor close to 0.5, which results in an adjusted speedup larger than 10. For 
the actual application, even higher load balancing factors are achieved, all greater than 0.8, and, as a 
result, an adjusted speedup of almost 8 is obtained for p = 8 and of more than 12 for p = 16. One may then 
conclude that 8 processes represents an "ideal" number for actual industrial problems of such dimensions, 

| 
| 
Y 

12 

10: 

6 i 

e i w i e | u 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  El . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4D' . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3" . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  '4 - -  "4' 4- 

e e o 

0 I I I I ! I I 
0 O J  1 1 ~  2 2.5 3 3 ~  4 

N W  

Fig. 5. Adjusted speedup versus filter parameter for large-size problems. 



A parallel branch-and-bound algorithm 841 

i 

12 

10 

8 
I 

6 

4 

2 

0 
0 

l i i . w i 

N _ ~mO -E--.  

........ El . . . . . . . . . . . . . . . . . . . . . . .  -19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  m. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

• • e 

I I I I I I I 

0.5 1 1.5 2 2.5 3 3.5 
Nut 

Fig. 6. Adjusted speedup versus filter parameter for actual application. 

which is interesting from a practical point of view. (For a more detailed analysis of speedup results for 
each class of problems, see Section 5.4). 

5.2. Comparison of initialization strategies 

To compare the initialization strategies, we examine the evolution of the load balancing factor and of 
the adjusted speedup as functions of the number of working processes used. This is illustrated in Figs 7 
and 8, which display results averaged over all 10 problems. Note that similar tendencies are observed for 
each problem class (medium-size, large-size and actual application), although significant differences are 
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Fig.  7. Load balancing factor versus number of processes for all p r o b l e m s .  
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displayed in the range of values of both measures obtained for each class. 
Three main conclusions emerge from these figures. 

• An efficient load balancing appears easier to achieve when the synchronous initialization phase is 
used. This is especially true when the asymmetric variant is used, which generally outperforms the 
symmetric one. 

• A good load balancing factor does not necessarily lead to an efficient implementation. In particular, 
compared to the others, the A5 strategy shows competitive load balancing factors but poor adjusted 
speedups. This may be attributed to the significant synchronization delays incurred by this method, 
especially when implemented within a distributed system such as the one used here. 

• Overall, the R, A0 and SO strategies are competitive and give similar results with respect to the 
adjusted speedups, with A0 and SO dominating, especially when the number of processes 
increases. 

5.3. Search overhead 

Next, we analyze the search overhead, hereafter noted SO, incurred by the parallel algorithm. Since 
this value is clearly dependent upon the instance being solved, we first display, in Tables 2-6, the search 
overhead obtained by each initialization strategy for each problem instance and four values of p. 

Note that, when the root initialization procedure is used, the sequential and the parallel algorithms 
perform the same branching and bounding operations, but in a different order. Therefore, the parallel 

Table 2. Search overhead for strategy R 

Problem p=2  p = 4  p=8 p=16 

PI 1.40 1.50 1.64 1.87 
P2 1.03 0.77 0.64 0.64 
P3 0.53 0.53 0.52 0.53 
P4 1,05 1,19 1.31 1.47 
P5 1.01 1,01 1.05 1.11 
1)6 1.01 1.00 1.12 1.31 
P7 1,12 1,41 1.72 1.86 
P8 0.84 1.07 1.25 1.47 
P9 1.00 1.00 1.06 1.08 
PI0 1.07 1.20 1.44 1.84 
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Table 3. Search overhead for sU'ategy A0 

Problecm p=2 p=4 p=8 p=16 

Pl 1.58 2.54 3.05 2.42 
P2 0.79 1.02 1.08 i.25 
P3 0.65 1.04 0.81 0.99 
P4 1.11 1.38 1.20 1.54 
P5 1.04 1.06 1.10 1.13 
P6 1.00 0.87 1.04 1.28 
P7 1.28 1.40 1.40 1.56 
P8 0.93 0.93 0.94 1.26 
P9 0.99 0.94 1.18 1.73 
PI0 1.18 1.39 1.45 1.82 
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algorithm may discover improving solutions faster (in terms of the number of nodes explored to this 
point) than the sequential method, thus leading to positive anomalies (SO< 1). The contrary is also likely 
to occur and the parallel execution then exhibits negative anomalies (SO> 1). (For a complete survey of 
past studies on anomalies in parallel branch-and-bound algorithms, see [9].) In this respect, the results of 
Table 2 are especially interesting, since they show that, for each problem, the amplitude of the anomalies 
observed (either positive or negative) increases as p increases. The other tables show that this behavior 
is exclusive to the root initialization. In particular, both the A5 and $5 strategies do not exhibit any trends 
with respect to p. However, the A0 and SO strategies show a similar tendency to have their search 
overhead increased, on average, as p increases. 

We also note that the amplitude of the anomalies is generally higher when the A5 and $5 strategies are 

Table 4. Search overhead for strategy A5 

Problem p=2  p = 4  p=8 p=16 

Pl 1.44 1.12 1,16 1.96 
P2 1.17 0.57 0,78 1.38 
P3 0.68 0.55 0.75 1.35 
P4 0.95 2.20 1.64 1.29 
P5 1.14 1.04 1.13 1.04 
P6 0.94 1.20 1.06 1.09 
P7 1.25 1.51 3.92 1.25 
P8 0.96 1.29 0.61 0.74 
P9 1.93 1.48 1.25 1.22 
PlO 1.05 1.14 1.46 2.73 

Table 5. Search overhead for strategy SO 

Problem p=2 p=4 p=8 p=16 

PI 1.68 2.06 2.23 1.89 
P2 0.80 0.83 0.85 0.99 
P3 0.65 0.94 0.96 0.90 
P4 1.11 1.30 1.74 1.50 
P5 1.03 1.04 0.97 1.18 
P6 1.00 0.84 1.07 1.37 
P7 1.29 1.51 1.56 1.94 
P8 0.94 0.87 1.12 1.39 
P9 0.99 0.79 1.08 1.39 
PlO 1.17 1.37 1.44 1.47 

Table 6. Search overhead for strategy $5 

Problem p=2  p=4 p=8 p= 16 

PI 1.44 1.12 1.33 2.11 
P2 1.17 0.60 0.78 1.40 
P3 0.68 0.78 0.86 1.35 
P4 0.95 1.12 1.44 1.77 
P5 1.14 0.89 1.27 1.34 
P6 0.94 1.07 1.32 1.45 
P7 1.25 1.56 1.52 1.56 
P8 0.96 0.81 1.41 0.73 
P9 1.93 1.19 1.42 2.17 
PIO 1.05 1.25 1.21 1.45 
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used. This shows that these strategies lead to follow significantly different paths than the sequential 
algorithm. Moreover, the trees generated are usually larger than the sequential one, especially for the 
actual application and the large-size problems. The same conclusion holds for all other initialization 
strategies, irrespective of the number of processes used. We interpret this result as an indication of the 
efficiency of the sequential search strategy, rather than a deficiency of the parallel one. 

5.4. Speedup analysis 

We now turn to analyze the speedups obtained from the parallel algorithm for each class of problems 
and, by using this metric, further compare the initialization strategies. Figures 9-11 show the speedup as 
a function of the number of working processes for, respectively, the medium-size problems (average), the 
large-size problems (average) and the actual application. 

The following conclusions emerge from these figures. 

• Ve ry  limited speedups are obtained for medium-size problems, due to the small size of the branch- 
and-bound trees. Also, for this class of problems, the better results obtained from the root 
initialization may be explained by positive anomalies. 

• For large-size problems, the A5 and $5 strategies are outperformed by the others, because of the 
significant synchronization delays they incur. Note that the clear superiority of A5 over $5 forp= 16 
can be attributed to important differences in the size of the trees generated by each strategy. For this 
class of problems, it is also clear that search overhead causes a significant decrease in speedups. 
Nevertheless, and despite the relatively small size of the trees generated (less than 1000 nodes), 
interesting speedups are observed. 

• For the actual application, the $5 strategy outperforms the others because it generates a smaller tree. 
This observation is confirmed by Fig. 12, which shows the adjusted speedup as a function of the 
number of processes for all initialization strategies. Here, the situation is reversed: the $5 strategy 
is outperformed by the others. The two figures also show that, for this problem, the speedup is 
severely limited by the presence of negative anomalies. Nevertheless, interesting speedups are 
obtained, showing the problem to be solved in less than 30 min for p= 16. 
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6. CONCLUSION 

We have presented a parallel branch-and-bound algorithm for solving the multicommodity location 
problem with balancing requirements. The algorithm is based on a depth-first branch-and-bound 
procedure, which is currently the most efficient sequential method for solving the problem. The parallel 
algorithm proceeds in two phases: a synchronous initialization and an asynchronous exploration of the 
branch-and-bound tree. The synchronous initialization phase can be seen as a generalization of the 
sequential best-first search strategy. The exploration phase consists of an asynchronous procedure where 
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Fig. 12. Adjusted speedup versus number of processes for actual application. 

each process performs its own depth-first search of a subtree. When its local pool of subproblems is 
empty, an idle process sends a request for work to a coordinator process that schedules the load balancing 
activities based on information received from the working processes. 

In general, compared with the approach which initializes the algorithm by giving the root node to one 
process, the synchronous initialization phase yields balanced initial loads, hence decreasing the 
subsequent traffic of exchanged nodes. However, synchronization delays may be important, especially 
when the computation of bounds varies significantly from one subproblem to another, or when a 
distributed environment is used. Our experiments have also shown that the asynchronous exploration 
performs well, irrespective of the initialization phase, and achieves significant speedups on a set of ten 
representative test problems, despite the fact that, for many instances, the parallel algorithm generates 
significantly larger trees than the sequential method. We note that this is an indication of the efficiency 
of the sequential search strategy, since for these instances, even if different initialization strategies were 
tested, smaller trees than the sequential one were generally not obtained. Overall, we have demonstrated 
that parallel branch-and-bound techniques may help to solve more efficiently large real-size instances of 
the multicommodity location problem with balancing requirements. In addition, we note that the 
proposed parallelization approaches could prove useful in solving other problems that require time- 
consuming bounding procedures and which generate large search trees. 
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